Q. 02 Three copper blocks of masses M₁, M₂ and M₃ kg respectively are brought into thermal contact till they reach equilibrium. Before contact, they were at T_1 , T_2 , T_3 ($T_1 > T_2 > T_3$). Assuming there is no heat loss to the surroundings, the equilibrium temperature T is (s is specific heat of copper) 1) $$T = \frac{T_1 + T_2 + T_3}{3}$$ 2) $$T = \frac{M_1T_1 + M_2T_2 + M_3T_3}{M_1 + M_2 + M_2}$$ 1) $$T = \frac{T_1 + T_2 + T_3}{3}$$ 2) $T = \frac{M_1T_1 + M_2T_2 + M_3T_3}{M_1 + M_2 + M_3}$ 3) $T = \frac{M_1T_1s + M_2T_2s + M_3T_3s}{M_1 + M_2 + M_3}$ 4) $T = \frac{M_1T_1 + M_2T_2 + M_3T_3}{3(M_1 + M_2 + M_3)}$ 4) $$T = \frac{M_1 T_1 + M_2 T_2 + M_3 T_3}{3(M_1 + M_2 + M_3)}$$ **Sol.** 2) $$T= rac{M_1T_1+M_2T_2+M_3T_3}{M_1+M_2+M_3}$$ It is given that there is no heat loss in the surrounding and equilibrium temperature in the system is T. It is also given s is the specific heat of the copper Let us assume T_1 , $T_2 < T < T_3$: heat loss by M₃ = heat gain by M₁+ heat gain by M₂ $$\Rightarrow$$ M₃ s(T₃-T) = M₁ s(T-T₁)+M₂ s(T-T₂) $$\Rightarrow$$ T(M₁ + M₂ + M₃) = M₃T₃ + M₁T₁+ M₂T₂ $$\therefore T = \frac{M_1 T_1 + M_2 T_2 + M_3 T_3}{M_1 + M_2 + M_3}$$